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Solution Method for Countercurrent Plug
Flow Models of Multicomponent Gas
Separation by Permeation

Richard A. Davis
Department of Chemical Engineering, University of Minnesota Duluth,
Duluth, Minnesota, USA

Abstract: A simple solution method was developed for the countercurrent ideal plug
flow model of multicomponent gas separation by permeation that is commonly
applied to hollow fiber membrane modules. The solution method is independent of
the number of components in the feed gas. The result is an implicit function in a
single variable defined as the stage cut. The function is readily solved by the method
of damped successive substitution. The method was tested for three cases from the
literature and found to be insensitive to the initial guess for stage cuts less than 60%.

Keywords: Countercurrent plug flow model, gas separation, permeation, hollow fiber
membrane modules

INTRODUCTION

Multicomponent gas separation by permeation is finding industrial
applications ranging from petrochemical processing to air pollution
control (1, 2). Despite the potential for large pressure drop through the
fiber bore, hollow fiber membranes are commonly used for gas permeators
because they provide a large contact area with excellent membrane struc-
tural support in a compact module (3). The design of hollow fiber
membrane modules is similar to that for a shell and tube heat exchanger.
A hollow fiber membrane module consists of a bundle of membrane fibers
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mounted in a cylindrical shell. A high pressure feed gas may be introduced
to either the shell or bore side of the hollow fibers. The components of the
gas mixture permeate through the membrane to the low pressure side at
different rates to affect a separation. In a hollow fiber module, the gases
on the feed and permeate sides of the membrane move in parallel flow.
The non permeating gas or residue stream is collected at the opposite end
from the feed stream. It has been demonstrated that the countercurrent flow
pattern, shown in Fig. 1, provides the most efficient separation in terms of
minimizing the required membrane area (3). In countercurrent flow,
the low-pressure permeate gas stream exits the module at the feed end. The
permeate stream is typically closed at the residue end of the module.
However, a sweep gas may be introduced to the permeate side to enhance
the separation by decreasing the partial pressure of the permeating gas
species (4). A permeate sweep stream was not considered further in this work.

The ratio of the permeate stream to feed stream molar flow rates is the
stage cut.

g="r (1)
nr

The rejection is the ratio of the residue stream to feed stream molar flow rates.

1—g="F )
ng

Mathematical models assuming ideal plug flow patterns have been shown
to describe the performance of hollow fiber membrane modules in terms of the
stage cut and exit stream compositions (3—5). In plug flow, the compositions
and pressure of the parallel gas streams change in the axial direction only. Plug
flow models consist of differential equations for the material balances that
include the total and individual species molar flow rates and pressure
change along the membrane.

The solution to the model equations for concurrent flow is relatively
straightforward because the operating conditions for the feed and permeate
stream are specified at the same end of the membrane module. However,
mathematical models of countercurrent flow are complicated by split
boundary conditions. Typically, the feed rate and composition is specified
at the feed end of the membrane module, where the permeate stream exiting
flow rate and composition are unknown. At the opposite end the permeate
stream conditions are specified in terms of the unknown residue stream

Feed, ne — > > Residue, nx
Permeate, np “

Figure 1. Countercurrent flow pattern in a membrane module with closed permeate
end: ng, ng, and np are the molar feed, residue, and permeate rates, respectively.
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composition. This complication has led several authors to develop a variety
of solution methods to treat the split boundary value problem for the counter-
current flow pattern.

Early treatments applied variations of the iterative shooting method. A
guess for the unknown boundary conditions at one end of the module is
upgraded to match the solution to the differential material balances with the
specified conditions at the opposite end of the module. Wegstein’s (6) and
Powell’s (3, 6, 7) methods have been used to upgrade the guesses. This
approach is highly sensitive to the selection of the guessed conditions
required to initiate the solution procedure (6, 7). The solution method
becomes increasingly sensitive as the number of components in the feed
mixture is increased as does the computational requirement.

Coker, et al. (4) applied the tanks-in-series model to solve for the pressure
and composition profiles simultaneously. They treated the residue and
permeate streams as a series of well-mixed stages. The model consists of a
set of material and energy balances around each well mixed stage. They
solved the resulting system of nonlinear algebraic equations simultaneously
for the species molar flow rates throughout the membrane module. Their
solution method requires a large set of initial guesses for the compositions
and flow rates from each stage throughout the permeator. This approach is
essentially a first order implicit Euler integration scheme. The tanks-in-
series solution method is less sensitive to initial guesses for the compositions
and flow rates, but is computationally less efficient, requiring a large number
of stages to give the same accuracy of higher order integration schemes that
use fewer stages.

Other solution methods make restrictions on the specifications or other
simplifying assumptions. Pan (5) developed an analytical solution for the
special case where the residue composition of one of the species in the
mixture is specified. The resulting algebraic expressions require an
iterative solution method. Kovvali, et al. (8) developed analytical
expressions for the flow rates and composition, and pressure profiles in
countercurrent flow modules by assuming a linear relationship between
the high and low pressure stream compositions. Their results assume
cross flow behavior and are independent of the flow directions. More
recently, Kaldis, et al. (9) applied the method of orthogonal collocation to
solve the boundary value problem. The collocation method requires an
iterative solution, but was shown to be less sensitive to initial guesses
required to initiate the solution method. A disadvantage of orthogonal
collocation is the trade-off between the number of collocation points,
solution accuracy, and computational requirements. Nevertheless, orthog-
onal collocation provides a powerful technique for problems with a large
stage cut.

The aim of this work was to develop a simpler approach to solving
the countercurrent flow model equations that avoids complex algorithms or
simplifications to the model equations. The approach transforms the model
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equations into an implicit function for the stage cut:

0=f£(0) (3)

Implicit functions in the form of Equation (3) are readily solved by the
relatively straightforward method of successive substitution. Although succes-
sive substitution is linearly convergent, the method is easy to implement and
independent of the number of components in the feed gas mixture. The method
was also found to be relatively insensitive to the initial guesses for the
unknown boundary conditions of stage cut, pressure, and permeate
composition.

COUNTERCURRENT PLUG FLOW MODEL

The solution-diffusion model (2) of permeation through a semi-permeable
membrane describes the local flux of gas species i across the permeator:

Ji = Qi(Pux; — Pry;) 4)

where J; is the species flux, Py and P; and x; and y; are the pressures and mole
fractions of species i in the high pressure stream on the feed side and low
pressure stream on the permeate side of the membrane, respectively. Q; is
the permeance of species i for the particular membrane material, which
is defined as the ratio of the permeability coefficient, ¢;, to membrane
thickness, &:

qi
Qi=~< )
As shown in Fig. 2, overall and species mole balances around the residue

end of the membrane module and an arbitrary position along the membrane
give

ng =ng+np (6)
Xing = XpAR + ying @)
ne ™ ny ™ | ‘f_’nk
v 1!
np 4] n, f
A «—

Figure 2. Mass balance around the residue end of a countercurrent flowing
membrane module.
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where x; and y; and ng and n; are the species mole fractions and total molar
flow rates in the high and low pressure streams, respectively.

The derivation of the plug flow model equations used here follows the
method of Shindo, et al. (3). However, the species mole balances are defined
in terms of the permeate stream composition instead of the feed side stream
composition. This model assumes an ideal plug flow pattern with constant
temperature and species permeances. Resistance to mass transfer is assumed
to be limited to solution and diffusion in the active layer of the membrane.
The local change in the total molar flow rate of the permeate stream and
molar flow rate of species i with respect to permeation area are:

dnL e
dA ; Qi(Pux; — Pry) ®
d(ZfL) = Qi(Pyx; — Pry;) foralli # j ©)

where N, is the number of components in the gas mixture, A is the membrane
area based on the outside diameter of the fiber, and j is the reference species
defined in terms of the component with the smallest permeance. The
material balances are integrated from the closed end of the module to the
feed end. The mole fractions in the permeate stream are subject to the con-
straint:

Y y=1 (10)

The plug flow model equations may be recast in dimensionless form using
the following dimensionless parameters.

S:% (11)
nr
Qi
= — 12
a 0, (12)
V—E (13)
$="5 (14)
nrg

where S represents the dimensionless area of permeation, «; is the ideal
separation factor for species i relative to the reference species j, y is the
transmembrane pressure ratio, and ¢ is the local stage cut. In dimensionless
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terms, the plug flow model equations become

_xpi(1—0)+yid
V=T v e (15
dp &
5 = et =) (16)

Ne _
% _ a,(x, sz) %Elzl ay(x; '}’yl) for all i # j (17)

N,
yi=l= >y (18)

i=1(#))

At the closed end of the permeate stream where the flow is zero, Equation
(17) reduces to

dy;
d_ézo foralliat S=0 (19)

The change in pressure is calculated from the Hagen-Poiseuille equation
for laminar flow in hollow fibers.(4, 5, 9)

dy B
— = 20
das Y (20)
where
128un2R,T
b= NewDin,Pio; @b
+mDiD,PrQ;

and where R, is the ideal gas constant, T is the temperature, Py is the pressure
of the feed stream, Ny, is the number of hollow fibers in the module and D;,
and D,, are the inside and outside hollow fiber diameters, respectively. The
dimensionless pressure is subject to the following boundary conditions.

dy

—=0 atS=0 22
s a (22)
y=7v atS=Sp (23)

The composition of the permeate stream at the closed end of the fibers
is determined by combining Equations (17) and (19), then solving for

Yo,i:(3, 10)
ai(Xri — YoYo.i)
SN Ry — Yovo.)

Yo,i = (24)
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where the subscript 0 indicates the permeate stream conditions at the closed
end. The ratio of yg; to yg; for the reference species (a; = 1) gives

Yoi _ XRi = YoY0.i) (25)
Yo, XRj — YoYo.j
Solve Equation (25) for yo ;:
QGXR,i
Yo =—"F——~+ (26)
Yol — 1)+

where i is the ratio of reference species (j) residue to permeate mole fractions
at the closed end:

XR,j

= (27)
Yo.j
Equation (26) is substituted for y in Equation (10):
Ne XR.IC
YR o (28)

=1 ’YO(al - 1) + 170 -

Equation (28) is nonlinear in s and requires an iterative solution technique,
such as Newton’s method, to find . The permeate stream composition at
the closed end is then calculated from Equation (26).

CALCULATION METHOD

The solution procedure requires an initial guess for the stage cut and permeate
stream composition. Chen (7) showed that the following algebraic model
assuming an average driving force gives a reasonable approximation to
parallel flow behavior under limiting conditions of low stage cut. The
species mole balances take the following form.

xpi=(1— 0)xg;+ Oyp; (29)

The rate of permeation is calculated using an average species composition
in terms of the mole fraction in the feed and residue streams. The
permeate side is assumed to be well-mixed. This simplification avoids the
requirement of solving for the permeate and residue stream compositions
simultaneously.

Xp,i+ XR,i

ypi = Sai( T 7FYP,1'> (30)
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Equations (29) and (30) are solved simultaneously for the residue and
permeate mole fractions.

_ xpil20 = Sai(6 — 2yp)]
= 2601 — 0) + Scil0+ 27, (1 — 0)]

@31

XR,i

_ )CFJ'SO(,'(Z — 0)
T 2001 — 0) + Sa[0+ 2v:(1 — 6)]

Yp.i (32)

The stage cut in Equations (31) and (32) is found by applying the
following constraint, similar to the Rachford-Rice method applied to the
vapor-liquid equilibrium in an ideal stage:

dox=>y=0 (33)

This results in a single nonlinear equation for the stage cut.

S xri[20 — 2Sai(1 — yp)] B
; 2001 — 0) + Sa[0+ 2yp(l — O)] 34

Equation (34) is readily solved by iterative techniques, such as Newton’s
method. The permeate and residue stream compositions are then calculated
from Equations (31) and (32).

The pressure at the closed end of the permeate stream is initially
approximated by integrating Equation (20) assuming a linear average of the
stage cut between the permeate closed end where ¢ = 0 and the exit end

where ¢ = 6:
Yo 2/ vE +SOB (35)

The following steps are taken to solve the implicit countercurrent plug
flow model equations for the stage cut and exit stream compositions.

1. Define the reference species, j, as the component in the feed mixture with
the smallest permeance.

2. Define the dimensionless parameters S, «;, and y at the feed end of the
module. Set the iteration index for successive substitution to k = 1.

3. Use the average driving force approximation model of Chen (7) to
provide initial guesses for the overall stage cut fraction, 6, and
permeate stream composition.

4. Calculate an approximation for the pressure drop for flow inside the
fibers using the Hagen-Poiseuille equation assuming a constant stage
cut taken from Step 3. The result provides the initial condition for the
pressure in the fibers at the permeate closed end of the module.

5. Calculate the residue stream composition in terms of the feed compo-
sition and latest approximations for the permeate stream composition
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10.

and stage cut from mole balances around the module.

xpi — Okyp,i

for all species i. (36)
1 — 6

AR =
Calculate the permeate stream composition at the closed end in terms of
the residue mole fractions from step 5 using Equation (26)
Using the latest values for the unknown boundary conditions, integrate
the model equations from the closed permeate end to the feed end of
the membrane module for the final stage cut at the feed end, 6 = ¢
feed end pressure ratio, s, and permeate stream exit composition, yj
Check for convergence by comparing the stage cut from the previous
iteration with the value calculated in Step 7. The iterations of successive
substitutions are terminated when the following criterion is satisfied.

6 — 6
o

100’ <e (37)

where & represents a prescribed percent tolerance for convergence.
Upgrade the stage cut fraction, permeate stream composition, and
pressure at the closed end using a weighted average of the results
from step 7 and the previous iteration.

Orp1 = wl + (1 —w)o (38)
0P ka1 = wyp; + (L= W)y (39)
Your1 = Wlvr + (Yox — ¥l + (1 = w) v, (40)

where w < 1 is the weighting, or damping factor when w < 1.
Increment the iteration index to k = k + 1 and repeat Steps 5 through
10 successively substituting the current values for 6, vy, and yp until
the convergence requirement for the stage cut 6 in Equation (37) is
satisfied.

A similar algorithm may be used to determine the dimensionless

membrane area, S, given the stage cut, 6. The plug flow model equations
are rearranged for ¢ as the independent variable as follows.

N, -1
j—i - [121 o — w»} 1)
dy;  oi(xi — yyi) — yi Z;V:1 (X — Y1) for alli # i
dyi _ ) 42
do dI N eul — i) oralli A7
dy _ bB

— _ 43
d¢ yb SN auxi — ) )
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Equations (41), (42) and (43) are integrated over the range 0 < ¢ < 6. The
result for S, yy and yp are successively substituted for the initial guesses
until convergence in S is reached.

RESULTS AND DISCUSSION

The damped successive substitution solution method for the countercurrent
plug flow model was tested with three different cases of multicomponent
gas mixtures in semipermeable membranes reported in the literature
(3, 7, 8). In each case, the dimensionless area was specified and the
implicit equations were solved for the stage cut and exit stream compo-
sitions. The solution method was implemented with the computational
software Mathcad, using double precision calculations. The iterative
Levenberg-Marquardt method was used to solve the nonlinear equations to
estimate the stage cut and permeate stream composition required to
initiate the method as well as the closed-end permeate stream compositions
after each iteration of successive substitution. The differential equations
were solved by a variable step fourth-order Runge-Kutta integration
scheme. A damping factor of w= 0.6 was found to give satisfactory
results for all of the calculations presented here. A percent tolerance of
£=10"" was used to determine convergence with stage cut and exit
stream compositions precise to the fourth decimal place. This precision
was necessary to compare these results with the values reported in the
literature. The reference species with the smallest separation factor was
positioned as component j = 1 in each case.

Case 1

The damped successive substation method was first tested on a three
component gas mixture and membrane system described by Shindo, et al.
(3). The feed stream composition and separation factors for the three
components are listed in Table 1. A constant relative pressure of y= 0.13
was assumed.

Table 1. Separation factor and stream compositions for Case 1 (3)

Gas species a Xp yp XR
1 15.3 0.450 0.737 0.278
2 4.86 0.250 0.201 0.279

3 1.00 0.300 0.062 0.443
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The stage cut for a dimensionless area of S = 1 was calculated after 16
successive substitutions for 6§ = 0.375. The solution for the permeate and
residue stream compositions is also listed in Table 1. These results are in
agreement with the results reported by Shindo, et al. (3) using Powell’s
method.

The sensitivity of the solution method to initial guesses for 6 and yp was
also tested. The method converged to the same results in Table 1 with the
same number of successive substitutions for all combinations of initial
estimates for 0.001 < 6 < 0.6 and yp. The method diverged for a dimension-
less area S > 1.6, corresponding to a relatively large stage cut, 6 > 0.6 at
these conditions. Decreasing the damping factor did not help the convergence
for 6 > 0.7.

Case 2

The damped successive substitution method was applied next to the nine
component gas mixture-membrane system investigated by Chen, et al. (7)
The solution method was tested for S =1 and a constant pressure ratio,
v=0.1. The separation factors, feed conditions, and results for the nine
component system are listed in Table 2.

The stage cut was calculated as 6 = 0.304. These results agree with those
reported by Chen (7). Although the number of components was increased
three-fold to nine for this case, only 16 successive substitutions were
required for convergence, the same required for a three component gas
mixture in Case 1. Tests for sensitivity to the initial guesses required to
initiate the successive substitution method showed no increase in the
number of iterations for 0.01 < 6 < 0.6. The method diverged for larger
stage cuts at these conditions.

Table 2. Composition and separation factor for gas streams in

Case 2 (7)

Gas species @ XF yp XR
1 20.1 0.465 0.912 0.269
2 0.612 0.056 0.007 0.078
3 0.873 0.200 0.033 0.273
4 1.02 0.061 0.012 0.083
5 0.649 0.124 0.015 0.171
6 1.46 0.014 0.004 0.019
7 1.00 0.048 0.009 0.065
8 1.46 0.023 0.006 0.030
9 1.00 0.009 0.002 0.012
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Case 3

The affect of pressure drop through a hollow fiber bore was considered in this
third case using the hypothetical gas mixture and conditions of Kovvali,
et al. (8). The fiber inside and outside diameters were D; =2 x 10~ *m and
D,=3 x 10 *m, respectively. The feed rate to the shell side was
1.0 x 107* mol/s, with a pressure of 6.08 x 10°Pa, viscosity of
15%x107° kg/m-s, and temperature of 298 K. The permeability of the
reference species was Q; = 3.0 x 10~?mol/m*- s - Pa. The feed composition
and ideal separation factors for this case are listed in Table 3.

The stage cut calculation for a pressure ratio at the feed end, yr = 0.5 gave
0 = 0.238, in agreement with those of Kovvali (8). Accounting for pressure
change in the fiber increased the number of successive substitutions to 19 in
this case. Otherwise, the successive substitution method was tested and
found to be insensitive to the initial guesses required to initiate the solution
method. However, the convergence was not achieved for stage cuts greater
than 0.6 for these conditions, as with the other cases studied here.

The solution for the dimensionless pressure profile is plotted in Fig. 3,
along with the mole fractions of the fast species in the residue and
permeates streams. The pressure change in the permeate stream was approxi-
mately 30%. The relatively large change in the dimensionless pressure
resulted in stiffer differential equations that required more integration steps.
Nevertheless, converged solutions were reached in a matter of seconds on a
personal computer.

The lack of sensitivity to the starting conditions makes the damped suc-
cessive substitution an attractive alternative to previously reported solution
techniques. The method is simple to implement using standard numerical
methods for solving single nonlinear algebraic equations and systems of
ordinary differential equations.

In the cases shown here, higher stage cuts would result in very small mole
fractions for the fast gas species in the residue. This tended to cause the
method of successive substitution to diverge. The lack of convergence for
large stage cuts limits the range of usefulness of the successive substitution
method presented here. However, membrane modules are scaled up by
adding stages. This technique should apply to staged processes that avoid

Table 3. Composition and separation factor of feed species for

Case 3 (8)

Gas species a Xr yp XR

1 10.0 0.100 0.251 0.053
2 5.00 0.200 0.331 0.159
3 2.50 0.200 0.197 0.201
4 1.00 0.500 0.221 0.587
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Figure 3. Profiles of pressure ratio, v, and fast species compositions for Case 3.
Closed permeate end is at S = 0.

large stage cuts in any one module. The method of orthogonal collocation is
recommended when larger stage cuts are required.

CONCLUSIONS

A simple solution method was developed for the countercurrent ideal plug
flow model of multicomponent gas separation by permeation. The model
equations were arranged in the form of an implicit function for the stage cut
that is readily solved by the method of damped successive substitution. The
exit stream compositions are also calculated in this process. The solution
method is independent from the number of components in the gas feed
mixture. The damped successive substitution method was tested and found
to converge for stage cuts less than 60% for the conditions of three case
studies. The range of stage cut for other systems may be different. The
method was found to be insensitive to the initial guesses for the unknown
boundary conditions required to initiate the iterations. Pressure drop in
the permeate stream was also incorporated into the model for hollow
fiber membranes. The damped successive substitution method may also be
used to determine the area of permeation for a given stage cut. The successive
substitution is an attractive alternative because it avoids complex program-
ming or limiting assumptions of previous solution methods and is simple to
implement with computational software.
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NOMENCLATURE
A total membrane permeation area based on fiber outside

“H I NLUXI0R VEZISU

diameter (m?)

hollow fiber diameter (m)

molar flux (mol/m?-s)

molar flow rate, (mol/s)

number of components in feed gas

number of hollow fibers

pressure (Pa)

permeability coefficient (mol/s-Pa-m)
permeance (mol/s - Pa - m?)

ideal gas constant (8.314 Pa- m3/mol -K)
dimensionless area

temperature, K

relaxation factor

residue or high pressure stream mole fraction
permeate or low pressure stream composition

Greek Symbols

Q

€T DO R ®

ideal separation factor, ratio of permeability of species i to reference
species j.

dimensionless pressure term for Hagen-Poiseiulle equation
pressure ratio

membrane thickness (m)

percent tolerance of convergence

stage cut fraction

gas viscosity (kg/m-s)

local stage cut

ratio of residue to permeate composition of reference species at the
closed end

Subscripts

WSS T mm o

closed end of permeate stream
feed gas

high pressure stream

species index

reference species

low pressure stream

permeate gas

residue gas
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